An [[../Math/Affine Transformations|Affine Transformations]] that brings [[View Space]] [[../Math/Homogeneous Coordinates|Coordinates]] into [[World Space]] [[../Math/Coordinate System|Coordinate System]].
$\huge
\begin{align}
\text{Camera Data} &\begin{cases}
C :& \text{Centre of Camera}\\
w :& \text{Width of Camera}\\
h :& \text{Height of Camera}\\
\vecn u :& \text{Right Dir.}\\
\vecn v :& \text{Up Dir.}\\
\huge \vecn u \parallel \vecn v
\end{cases}
\\
\end{align}
$
We assume that $\vec u$, $\vec v$ form a [[../Math/Chirality|Right Handed]] coordinate system.
$\huge \begin{align}
M_{c} &= \mat{
\tilde u & \tilde v & \tilde C
}\\
&=\mat{
u_{x} & v_{x} & C_{x}\\
u_{y} & v_{y} & C_{y}\\
0&0&1\\
}\\
\end{align}$
#### [[Viewing Transform]]
To get solve $V = M_{c}^{-1}$,
>[!example] Example for [[../Math/Homogeneous Coordinates|Homogeneous]] $\Rn 2$
> [[Digression]]: [[../Math/Inverse Matrices|Inverse]] of an [[../Math/Affine Transformations|Affine Transformation]]:
>
>$\huge \begin{align}
>M_{c} &= T_{\vec v} \cdot L \\
>M_{c}^{-1} &= L^{-1} \cdot T_{\vec v}^{-1} \\
>&= L^{-1} \cdot T_{-\vec v} \\
>
>\\
>
>L &= \mat{ a & b \\ c & d} \\
>L^{-1} &= \underbrace{\frac{1}{ad-bc}\mat{d&-b\\-c&a}}_{
>ad-bc \, \ne \, 0
>} \\
>\\
>
>
>M_{c}^{-1} &=
>
>\boxed{
>{\frac{1}{ad-bc}\mat{d&-b&0\\-c&a&0\\0&0&ad-bc}}
>\cdot
>\mat{
>1 & 0 & -C_{x} \\
>0 & 1 & -C_{y} \\
>0 & 0 & 1 \\
>}}
>\\
>\end{align}$