Similar to [[Camera Modeling Transform (2D)]]. $\huge M_{C} = \mat{ {\vec u} & \vec v & \vec n & \tilde{e} } $ >[!tip] The variables here are defined [[Perspective Projection|here]] To get the [[Viewing Transform]], you take [[../Math/Inverse Matrices|Inverse]] of $M_C$. $\huge V = M_{C}^{-1} $ >[!note] [[Geometry]] of Perspective > $M_c$ nor $V$ effect the [[Geometry]] of the [[Perspective Projection|Projection]], only rotations and translations are happening. > > The linear part of both of these are necessarily a rotation. >[!example]- >Camera with: >$\begin{align} >&\begin{matrix} >E=\pa{3,1,-2} >&\vec u = \mat{0\\1\\0} >&\vec v = \mat{0\\0\\1} >&\vec n = \mat{1\\0\\0} >\end{matrix} >\end{align}$ >$\begin{align} >M_{c} &= \augmented{c|c|c|c}{\vec u & \vec v & \vec n & E} \\ >&= \mat{ >0&0&1&3\\ >1&0&0&1\\ >0&1&0&-2 \\ >0&0&0&-1 >} \\ >&= T_{\vec v} \circ L \\ >\end{align}$ >$\begin{align} >V &= M_{c}^{-1} \\ >&=L^{-1} \circ T_{-\vec v} \\ >&= \underbrace{L^{\intercal}}_{\text{Rotation}} \circ T_{-\vec v} \\ >&= >\mat{ >0&1&0&0\\ >0&0&1&0 \\ >1&0&0&0 \\ >0&0&0&1 >}\mat{ >1&0&0&-3\\ >0&1&0&-1\\ >0&0&1&2\\ >0&0&0&1 >} >\\&=\color{pink} \boxed{\color{white}\mat{ >0&1&0&-1\\ >0&0&1&2\\ >1&0&0&-3\\ >0&0&0&1 >}} >\end{align} >$