![[../../00 Asset Bank/Pasted image 20250404090541.png|invert_Sepia]] Given $P=P_{\text{clip}}$ and $Q=Q_{\text{clip}}$ endponits of a [[Line Segment]] in [[Clip Coordinates|Clip Space]], and independent parameter $t$ in [[Device Space]], $\large \begin{align} I_{\text{dev}} &= (1-t)P_{\text{dev}}+tQ_{\text{dev}}\\ P_{\text{dev}} &= \frac{P}{P_{w}} \\ Q_{\text{dev}}&= \frac{Q}{Q_{w}} \end{align} $ $\large \begin{align} I&=(1-s)P+sQ \\ I_{\text{dev}} &= \frac{I}{I_{w}} \end{align} $ $\large S=S_{PQ}= \frac{1}{Q_{w}} \pa{ \frac{t}{{\frac{{1-t}}{P_{w}}+\frac{t}{Q_{w}}}}} $ ##### [[../Math/Barycentric Coordinates|Barycentric Coordinates]] Wrapping Function $\huge \begin{matrix} \hat{\lambda} = \frac{\lambda}{dP_{w}} & \hat{\mu} = \frac{\mu}{dQ_{w}}& \hat{\nu} = \frac{{\nu}}{dR_{w}} \end{matrix} $