![[../../00 Asset Bank/Pasted image 20250404090541.png|invert_Sepia]]
Given $P=P_{\text{clip}}$ and $Q=Q_{\text{clip}}$ endponits of a [[Line Segment]] in [[Clip Coordinates|Clip Space]], and independent parameter $t$ in [[Device Space]],
$\large
\begin{align}
I_{\text{dev}} &= (1-t)P_{\text{dev}}+tQ_{\text{dev}}\\
P_{\text{dev}} &= \frac{P}{P_{w}} \\
Q_{\text{dev}}&= \frac{Q}{Q_{w}}
\end{align} $
$\large
\begin{align}
I&=(1-s)P+sQ \\
I_{\text{dev}} &= \frac{I}{I_{w}}
\end{align}
$
$\large
S=S_{PQ}=
\frac{1}{Q_{w}}
\pa{
\frac{t}{{\frac{{1-t}}{P_{w}}+\frac{t}{Q_{w}}}}}
$
##### [[../Math/Barycentric Coordinates|Barycentric Coordinates]] Wrapping Function
$\huge \begin{matrix}
\hat{\lambda} = \frac{\lambda}{dP_{w}} &
\hat{\mu} = \frac{\mu}{dQ_{w}}&
\hat{\nu} = \frac{{\nu}}{dR_{w}}
\end{matrix} $