# Lines ## Line - Line Intersection ### [[Vector]] & [[Parametric Equation|Parametric]] Form #### $\R^2$ Two [[Lines]] in $\R^2$ in [[Lines#Vector Form|Vector Form]]. ![[../../00 Excalidraw/Intersections .excalidraw.dark.svg]] $\huge\begin{align*} l: (x,y) &= P + t\vec u\\ k: (x,y) &= Q + s\vec v\\ \end{align*}$ There is no [[Intersection]] if $\vec u \parallel \vec v$. > [!tip] > A quick way to check is to see if $\vec u \cdot \vec v = 0$. Rewrite in [[Lines#Parametric Form|Parametric Form]]. $\huge\begin{align*} l: \cases{ x = P_{x} + t v_x \\ y = P_{y} + t v_y \\ }\\ k: \cases{ x = Q_{x} + s u_x \\ y = Q_{y} + s u_y \\ } \end{align*}$ This creates a Linear [[System of Linear Equations]]. $\huge\begin{cases} P_{x}+ tv_{x}= Q_x+su_x\\ P_{y}+ tv_{y}= Q_y+su_y\\ \end{cases}$ Rearrange in terms of $t$. $\huge t = \frac{Q_x+su_x-P_x}{v_x} \\ $ Plug in $\huge\begin{align*} P_{y}+ \frac{Q_x+su_x-P_x}{v_{x}}v_{y}&= Q_{y}+ su_y \end{align*}$ Then solve for $s$. If the [[System of Linear Equations|Linear Equation]] can be satisfied, then the lines intersection. To find the intersection [[Point]] plug in $t$ to $l$ or $s$ to $k$ . > [!tip] Gut Check > To double check your work, you can take the values of $t$ and $s$ and plug them into the equation for the respective lines. If those two lines come up with different points from one another, then you did something wrong. #### $\R^3$ Contrary to $\R^2$, 2 lines in $\R^3$ can be [[Parallel#Not Parallel|not parallel]] and *not* intersecting. > [!definition] Skew Lines > > Two lines in $\R^3$ that do not intersect and aren't [[Parallel|parallel]]. ### [[Normal]] Form #### $\Rn2$ Basically the same thing as vector form. Intersection of: $\huge\begin{align*} l&: 2x-3y = 1\\ k&:x+y=3 \end{align*}$ $\huge\begin{align*} x=3-y \\ 2(3-y) - 3y &= 1\\ 6-2y-3y &= 1\\ -5 &= -5y\\ y &= 1\\ x &= (3-1) =2 \end{align*}$ #### $\Rn3$ Basically the same thing as vector form. > [!example] > $\huge\begin{align*} > p&:(x,y)=(1,8)+t\mat{1\\-3} \\ > q&:2x-y=2\\ > \end{align*}$ > $\huge\begin{align*} > p: \cases{ > x=1+t\\ > y=8-3t > } \\ > > 2(1+t) -(8-3t) &= 2\\ > 2+2t-8+3t&= 2\\ > t&= \frac{8}{5}\\ > > (1,8)+ \frac{8}{5} \mat{1\\-3} \\ > > \paren{ \frac{13}{5} , \frac{-24}{5}} > > \end{align*}$ # Planes ## Line-Plane Intersection Intersection of: $\huge\begin{align*} l&:\cases{ x=1-t\\ y=t\\ z=2+3t }\\ \alpha &: \cases{ x=3+s-2r\\ y=1+s\\ z=r } \end{align*}$ System of Linear Equations. With line-plane intersection, it is easier to have one in normal form. > [!example] > $\huge \alpha:(x,y,z)=(3,1,0)+s\mat{1\\1\\0}+r\mat{-2\\0\\1}$ > > $\huge\begin{align*} > \mat{1\\1\\0} \times \mat{-2\\0\\1} &= \mat{1\\-1\\2} \\ > 3 -1 +2(0) &= 2 \\ > \alpha: x-y+2z &= 2\\ > > (1-t) -t+2(2+3t)&= 2\\ > 1-2t+4+6t &= 2\\ > 4t &= -3 \\ > t &= -\frac{3}{4} > \end{align*}$ > $\huge\begin{align*} > \paren{\frac{1+3}{4}, - \frac{3}{4}, 2- \frac{3}{2}} > \end{align*}$ > > [!example] > Intersection of: > $\huge\begin{align*} > k&: \cases{ x=-3t\\y=1+t\\z=2+t }\\ > \beta&: x+4y- z = 2 \\ > \end{align*}$ > > $\huge\begin{align*} > > -3t+4(1+t)-(2+t)&= 2\\ > -3t+4+4t-2-t &= 2 \\ > 2 &= 2\\ > \end{align*}$ > $\huge \beta \parallel k $ > > [!example] > $\huge\begin{align*} > l&: \cases{x=2+t\\y=-1+3t\\z=2t} \\ > k&:\cases{x=2s\\y=-7+6s\\z=1+5} > \end{align*}$ > $\huge\cases{ > 2+t=-2s\\ > -1+3t=-7+6s \\ > 2t=1+5 > }$ > $\huge\begin{align*} > t=-2+2s\\ > - 1+3(-2+2s)=-7+6s\\ > -7=-7 > \end{align*}$ > [!tip] In R3, never stop and assume if parallel, check with all equations in the system. > ## Plane-Plane Intersection In $\Rn3$, any two non parallel planes have a [[Lines|line]] of intersection. $\huge \let l \in\R^3 = P+t\vec v$ $\huge\begin{align*} l\parallel \alpha \\ l\parallel \beta \end{align*}$ $\huge\begin{align*} \alpha&: 2x +y +z =3 \\ \beta&: 3x-y+2z = 1 \end{align*}$ $\huge z = \text{arbitrary.} = 0$ $\huge \cases{ 2x+y=3\\ 3x-y=1 }$ $\huge\begin{align*} P &= \paren{\frac{4}{5},\frac{7}{5},0} \end{align*}$ $\huge\begin{align*} \vec v &= \alpha_{\perp} \times \beta_{\perp} \\ \vec v &= \mat{2\\1\\1}\times\mat{3\\-1\\2}=\mat{3\\-1\\-5} \end{align*}$ When finding the line of intersection between [[Planes]], choose an arbitrary value to plug in to create a [[System of Linear Equations]] ([[Augmented Matrix]]). ### 3 Plane Intersection Find the intersection: $\huge\begin{align*} \alpha&: x+3y-z=1 \\ \beta&:2x-2y+2z=3\\ \gamma&:5x+y+2z=0 \\ \end{align*}$ $\huge\begin{align*} &\rowechelon{ 1&3&-1&1 \\ 2 & -2 & 2 & 3 \\ 5 & 1 & 2 & 0 }\\\\ \sim_{R_{1}-2R_{0}} &\rowechelon{ 1 & 3 & -1 & 1 \\ 0 & -8 & 4 & 1 \\ 5 & 1 & 2 & 0 }\\\\ \sim_{R_{2}-5R_{0}} &\rowechelon{ 1 & 3 & -1 & 1 \\ 0 & -8 & 4 & 1 \\ 0 & -14 & 7 & -5 }\\\\ \sim_{R_{1} - \frac{1}{2} R_{2}} &\rowechelon{ 1 & 3 & -1 & 1 \\ 0 & 1 & - \frac{1}{2} & - \frac{1}{8} \\ 0 & -14 & 7 & -5 }\\\\ \sim_{?} &\rowechelon{ 1 & 3 & -1 & 1 \\ 0 & 1 & - \frac{1}{2} & - \frac{1}{8} \\ 0 & 0 & 0 & - \frac{27}{4} }\\\\ &\text{Inconsistent matrix.} \end{align*}$