For some given angle $\theta$ and [[Axis]] $\vec u$, the rotation matrix is the [[Counter-Clockwise]] Rotation upon the $\vec u$-[[Axis]].
#### Vector Formula
$\huge \begin{align}
R_\ang{\theta, \vec u}(\vec v) &=
\cos(\theta)\vec v + \pa{\frac{1-\cos\theta}{\lvert \vec u \rvert ^2}}\pa{\vec u \cdot \vec v}\vec u + \frac{\sin \theta}{\lvert \vec u \rvert }\pa{\vec u \times \vec v}
\end{align}$
$ \huge R_{\ang{\theta,\vec u}}(\vec v_{\parallel}) = \vec v_{\parallel} $
#### Matrix Formula
$\huge
R_{\ang{\theta,\vec u}} = I_{3}\cos(\theta)+ \frac{1-\cos\theta}{\lvert \vec u \rvert ^2}
\pa{\vec u \otimes \vec u}
+ \frac{\sin\theta}{\lvert \vec u \rvert } \Lambda \vec u
$
>[!note] $\Lambda \vec u$ is the [[Cross Product Matrix]] of $\vec u$
>[!note] $\vec u \otimes \vec u$ is the [[Outer Product]] of $\vec u$ and itself
Properties of $R=R_{\braket{\theta, \vec u}}$
1. $\huge \det R = 1$
2. $R$ is [[Orthogonal]] / the rows and columns are mutually [[Orthonormal]]
3. $\huge R^{-1} = R^{\intercal}$