Affine equivalent for [[Fixed Points]] in [[Linear Transformation|Linear Transformations]].
$\huge \augmented{c|c}{A-I & -\vec b} $
*Same as the formula for fixed points in Linear Transformations because linear transformations are a subset of Affine transformations, where $\vec b = \vec 0$*
$\huge\begin{align*}
\let T &: \Rn3\to\Rn3 \\
T: \mat{x\\y\\z} &\mapsto\mat{2x+z+5\\-3x-y-3\\2x+2y-2} \\
T\pa{\vec x} &= \mat{ 2 & 0 & 1\\ -3 & -1 & 0 \\ 2 & 2 & 0 }
\mat{x\\y\\z} + \mat{5\\-3\\-2} \\
\\
\let \vec x_{0} &\text{ be a fixed point of } T: \\
\mat{x_{0}\\ y_{0} \\ z_{0}} &= \mat{2x_0+z_0+5\\-3x_0-y_0-3\\2x_0+2y_0-2 }\\
\vec x_{0} &= \mat{ 2 & 0 & 1\\ -3 & -1 & 0 \\ 2 & 2 & 0 }
\mat{x_0\\y_0\\z_0} + \mat{5\\-3\\-2} \\
\rowechelon{
1 & 0 & 1 & 5\\
-3 & -2 & 0 & -3 \\
1 & 1 & -1 & -2 \\
} &\sim \cdots \rowechelon{
1 & 0 & 1 & -5 \\ 0 & 1 & -\frac{3}{2} & 6 \\ 0 & 0 & 0 & 0
} \\
\sim \vec x_0 \in \cases{
x+z &= -5 \\
y - \frac{3}{2}z &= 6 \\
0 &= 0\\
}
\end{align*}$
#### Using fixed points to find translation
If we have our matrix $A$ and fixed point $\vec x_{0}$,
$\huge
\vec b = -\pa{A - I}\vec x_{0} \\
$
For any standard affine transformation,
$\huge \vec b = \frac{c}{\norms{\vec n}^{2}}\vec n$