[[Affine Transformations|Affine]] equivalent for [[Orthogonal Projection Transformation]].
$\huge A=
\frac{1}{\norms{\vec v}^{2}} \vec v {v}^{\intercal}
= \hat v \hat v ^{\intercal}
$
#### Using [[Homogeneous Coordinates]]
With $\vec{n}^{\intercal} \vec{\mathbf{x}}=c$:
$\huge\begin{align}
\text{Line Normal }&\cases{\tilde{n}} = \mat{n_{x} \\ n_{y} \\ \vdots \\ 0} \\
\text{Augmented Normal }&\cases{\tilde{N}} = \mat{ \vec{n} \\ -c} \\
\end{align}$
$\huge A=I- \frac{1}{\tilde{N}^\intercal \tilde v} \tilde{v}\tilde N^{\intercal} $
$\huge A=I- \frac{1}{\tilde{N}^\intercal \tilde n} \tilde{n}\tilde N^{\intercal} $
$\huge A=I- \frac{1}{\norms{\vec n}^2} \tilde{n}\tilde N^{\intercal} $
>[!example]
[[Orthogonal Projection]] into $l: x-2y=-5$
>
>$\huge
\vec n = \mat{1\\-2}, \tilde n = \mat{1\\-2\\0}, \tilde N =\mat{1\\-2\\5}
>$
>
>$\huge
A= \mat{1&0&0\\0&1&0\\0&0&1} - \frac{1}{ \mat{1&-2&5}\mat{1\\-2\\0} }
\mat{1\\-2\\0}\mat{1&-2&5}
>$
>$\huge
A= \frac{1}{5}\mat{4&2&-5\\2&-4&10\\0&0&5}
$
>[!example]
Project into:
>$\begin{align}
l: \vec{\mathbf{x}} &= \mat{3\\4\\-3} + t\mat{1\\0\\2} \\
\\
A &= \frac{1}{5} \mat{1&0&2\\0&0&0\\2&0&4} \\
\tilde{A} &=
\begin{bmatrix}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\frac{1}{5} & 0 & \frac{2}{5} & 0 \\
0 & 0 & 0 & 0\\
\frac{2}{5} & 0 & \frac{4}{5} &0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & -3 \\
0 & 1 & 0 & -4 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{bmatrix}
>\end{align}$