[[Affine Transformations|Affine]] Reflection across $\alpha$:
$\huge\begin{align*}
\alpha &\in \Rn{n}, n \in \set{2, 3} \\
\huge \alpha &: \vec n ^{\intercal} \vec x = c \\
\\
\text{Proj into } \vec n^{\intercal} \vec x &= 0: \\
A &= I - \frac{1}{\norms{\vec n}^{2}} \vec n \vec n^{\intercal} \\
\let \vec x_{0} &\in \alpha \\
\vec b &= (A - I) \vec x_{0}\\
&= \pa{I - \frac{1}{\norms{\vec n}^{2}}\vec n \vec n^{\intercal} -I} \vec x_{0} \\
\vec b &= \frac{1}{\norms{\vec n}^{2}}\vec n \vec n^{\intercal}\vec x_{0} \\
\end{align*}$
### With [[Homogeneous Coordinates]]
$\huge\begin{align}
A=I- \frac{2}{\norms{\tilde n}^2} \tilde n \tilde N ^ \intercal
\end{align}$