The [[Affine Transformations|Affine]] rotation is the same as a [[Rotation Transformation]] with $\vec b = \vec 0$.
#### Rotation around a point
To rotate around a point $P$ by an angle $\theta$, you can [[Affine Transformations|Translate]] the space to bring the point $P$ to the origin $\mathcal O$ , apply the [[Rotation Transformation|Rotation]], then translate back $\mathcal O \to P$.
$\huge
R_{P \, \op{by} \, \theta} = T_{\ang{P}}
\circ R_{\theta} \circ T_{\ang{P}}^{-1}
$
>[!example]-
> $\let T: \Rn2 \to \Rn 2$ be a rotation by $90\degree$ around $(3, 1)$.
>$\huge A_{\circlearrowleft90\degree} = \mat{0 & -1 \\ 1 & 0} $
>Find a fixed point of $T$.
>$\huge
>\begin{align*}
>\vec x_{0}&= \pa{3, 1}\\
>A\vec x_0 + \vec b &= \vec x_0 \\
>\vec b &= \vec x_{0}- A\vec x_0
>\end{align*}$
>$\huge\begin{align*}
>\vec b =&\mat{3\\1} - \mat{0&-1\\1&0}\mat{3\\1} \\
>\vec b &= \mat{4 \\ -2 } \\
>\therefore T(\vec x) &: \mat{0&-1\\1&0}\vec x + \mat{4\\-2}
>\end{align*}$
>$\huge \begin{align*}
>\vec b &= \vec x_{0}- A \vec x_{0}\\
>\vec b &= (I - A)\vec x _{0}\\
>\vec b &= -(A - I)\vec x_{0}\\
>\end{align*}$