Preserves everything that [[Linear Transformation]] preserve with the exception of *the origin point can move in an Affine transformation*.
> ![[Pasted image 20231102111415.png]]
$\let T: \Rn n \to \Rn n$, be an affine transformation.
There is a coressponding $n\times n$ [[Matrix]] A, and a “translation [[Vector]]” $\vec b \in \Rn n$ such that for any [[Point]] $\vec x$:
$\huge T(\vec x) = \underbrace{A\vec{\mathbf{x}}}_\text{Linear Transformation} + \underbrace{ \vec b }_\text{Translation}$
## [[Composition]]
$\huge\begin{align*}
T_1&: \vec{\mathbf{x}} \mapsto A_{1}\vec{\mathbf{x}} + \vec b_{1}\\
T_2&: \vec{\mathbf{x}} \mapsto A_{2}\vec{\mathbf{x}} + \vec b_{2}\\
\end{align*}$
$\huge\begin{align*}
T_{2} \circ T_{1} &= T_{2}\pa{ A_{1} \vec{\bf{x}} + \vec b _{1} } \\
&= T_{2}(A_{1}\vec{\bf x}) + T_{2}(\vec b_{1}) \\
&= A_{2}A_{1} \vec{\bf x} + \vec b_{2} + A_{2} \vec b_{1} + \vec b_{2} \\
&= A_{2}A_{1} \vec{\bf x} + A_{2} \vec b_{1} + 2\vec b_{2} \\
&= A_{2}\pa{A_{1} \vec{\bf x} + \vec b_{1} }+ 2\vec b_{2}
\end{align*}$