Let $y=f(x)$ be a function such that $\deriv{f}{x}$ is continuous on $\ba{a,b}$. The length of the curve $y=f(x)$ from $x = a$ to $x=b$ is:
$\huge L = \int_{a}^b \sqrt{1+\pa{f'(x)}^2}\d x $
>[!info]- Why the [[Derivative]] needs to be [[Continuous]]
>The reason why the [[Derivative]] needs to be [[Continuous]] is to prevent calculating the arc length of [[Infinity|Infinite]] length.
>[!example]
Find the length of the [[Curve]] $y= \ln(\sec x)$ from $x=0$ to $x=\frac{\pi}{4}$.
>>[!check]- Solution
>>$\huge
\begin{align}
y' &= \frac{1}{\sec x} \sec( x) \tan(x)
\\&=\tan (x) \\
\\
y'^2 &=\tan^2{x}\\ \\
L&=\int_{0}^{\pi/4} \sqrt{1+\tan^2 x} \d x \\
&=\int_{0}^{\pi/4} \sqrt{\sec^2(x)} \d x \\
&= \int_{0}^{\frac{\pi}{4}} \sec(x)\d x \\
&= \ln \left| \sec x + \tan x \right| \biggr \vert^{\frac{\pi}{4}}_{0} \\
& \dots\\
&= \ln \left| \sqrt{2} + 1 \right|\op{units}
\end{align}
>>$