If $f(x)\ge 0$ on $[a,b]$ and $f'(x)$ is [[Continuous]] on $[a, b]$, the surface obtained by rotating the curve $y=f(x)$ about the $x$ [[Axis]] from $x=a$ to $x=b$ is:
$\huge
\text{Surface Area} =
\int_{a}^b 2\pi f(x)\sqrt{1+f'(x)^2}\d x
$
> [!note]-
> This formula extends / is similar to [[Arclength|the formula for an Arclength of a surface of revolution]].
>[!example]
Find the area of the surface obtained by rotating the [[Curve]] $y=\sqrt{1+4x}$ about the $x$ [[Axis]] from $x=1$ to $x=5$
>>[!check]- Solution
>>$\huge \begin{align}
>>f(x) &= \sqrt{1+4x} = (1+4x)^{ \frac{1}{2} } \\
>>f'(x) &= 2(1+4x)^{ -\frac{1}{2} }\\
>>&= \frac{2}{\sqrt{1+4x}}\\
\\
S &= \int_{1}^5 2\pi f(x)\sqrt{1+f'(x)^2}\d x \\
&= \int_{1}^5 2\pi \sqrt{1+4x} \sqrt{1+\frac{4}{1+4x}}\d x \\
&= 2\pi\int_{1}^5 \sqrt{1+4x} \sqrt{\frac{5+4x}{1+4x}}\d x \\
&= 2\pi \int_{a}^5 \sqrt{5+4x} \d x \\
\\
\let u &=5+4x \\
\let \d u &= 4\d x \\
\\
S &= \frac{\pi}{2} \int_{9}^{25}\sqrt{u} \d u \\
&= \frac{\pi}{2} \cdot \frac{2}{3} u^{ \frac{1}{2} } \big \vert^{25}_{9} \\
&= \frac{\pi}{3} \pa{125-27} \\
&= \boxed{ \frac{98\pi}{3} \text{units}^2 }
\end{align}$