We say two matrices are [[Equivalent]] if their system of linear equations have the same solution(s)
> [!example]
>$\huge\cases{
>x+y-3z=-2 \\
>-x+y-z=0\\
>2x+y+2z=9
>}
>\sim\rowechelon{
>1&1&-3&-2\\
>-1&1&-1&0\\
>2&1&2&9
>}$
>[!seealso] See __[[Reduced Row Echelon Form#Special Cases|RREF]]__ for what different [[Augmented Matrix|Augmented Matrices]] tell us about the underlying [[System of Linear Equations]]
## Row Operations
Row operations are operations you can do to an Augmented Matrix that creates a new [[Equivalent]] [[Matrix]].
- [[Augmented Matrix#Add Row|Take a row and add a multiple of it to another row]]
- Multiply any *row* by some *nonzero* constant $C$
- Switch two rows
>[!example]- Using [[Gauss-Jordan Elimination]] to turn an [[Augmented Matrix]] to [[Reduced Row Echelon Form|RREF]]
>$\begin{align*}
>\rowechelon{1&1&-3&-2\\-1&1&-1&0\\2&1&2&9}
>&\sim\rowechelon{1&1&-3&-2\\0&2&-4&-2\\2&1&2&9} \\ &\sim\rowechelon{1&1&-3&-2\\0&2&-4&-2\\0&-1&8&13}\\
>&\sim\rowechelon{1&1&-3&-2\\0&1&-2&-1\\0&-1&8&13} \\
>&\sim\rowechelon{1&1&-3&-2\\0&1&-2&-1\\0&-1&8&13} \\
>&\vdots\\
>&\sim\rowechelon{1&0&0&1\\0&1&0&3\\0&0&1&2}
>\end{align*}$
>
>We stop when we get the left hand side to look like an [[Identity Matrix]], as this now corresponds to the equations $x=1$, $y=3$, $z=2$.