Describing a coordinate not from a origin, but from *more than one point* and using weighted averages.
>[!definition] Barycentric Coordinates
With respect to $\set{P, Q, R}$
> $\huge \ba{ a, b, c }_{PQR} = a\tilde P + b\tilde Q + c \tilde R$
> $ \huge \vector{PQ} \nparallel \vector{PR} $
For points, $a+b +c = 1$,
>
For Vectors, $a+b+c = 0$
![[Pasted image 20231115175403.png|invert_Sepia]]
$\ba{u, v, w}_{ABC}$
![[Pasted image 20231116104345.png|invert_Sepia]]
### Standard Form
>[!definition] Conversion to standard form
> $ \huge \mathcal{C}_{PQR\to S} = \mat{\tilde P & \tilde Q & \tilde R}$
>[!info] Affine Transformations
Barycentric coordinates will still be valid after an affine transformation,
>
>for ex. Barycentric coordinates for the centroid of a triangle will still be the centroid after any affine transformation
>[!example] Converting to standard
>$\huge \begin{align}
P &= \pa{0, 1} \\
Q &= \pa{4, 0} \\
R &= \pa{3, 4} \\
\let M &= \ba{0.3, 0.1, 0.6} \\
\end{align}$
>
>$\huge \begin{align}
\tilde M &= 0.3 \tilde P + 0.1 \tilde Q + 0.6 ]\tilde R \\
&= 0.3\mat{0\\1\\1}_{S} + 0.1\mat{4\\0\\1}_{S} + 0.6\mat{3\\4\\0}_{S} \\
&= \pa{2.2, 2.7}_{S}
\end{align}$
## Interiors
Any point is inside the triangle that determines the [[Coordinate System|Coordinate Space]] will have $a, b, c \ge 0$ in [[Barycentric Coordinates]].
$\huge \ba{a, b, c}_{PQR} \in \triangle_{PQR} \iff a, b, c \ge 0$
>[!example]
>$\huge \begin{align}
P&=\pa{0, 1} \\
Q&=\pa{4, 0} \\
R&=\pa{3, 4} \\
z&= (1, 3) \\
\text{Is } z &\in \triangle_{{PQR}}? \\
\\
\mathcal{C}_{S\to PQR} &= \mat{\tilde P & \tilde Q & \tilde R}^{-1} \\
&= \frac{1}{15} \mat{-4&-1&16\\3&-3&3\\1&4&-4} \\
\mathcal{C}_{S\to PQR} \tilde z &= \mat{ \frac{3}{5}, -\frac{1}{5}, \frac{3}{5} } \\
z &= \ba{\frac{3}{5}, -\frac{1}{5 }, \frac{3}{5}}_{{PQR}} \\
z_{y} < 0 &\therefore z \notin \triangle_{{PQR}} \\
\end{align}$
>[!example]- Problem Packet: Collisions
If point V is traveling at some velocity $\vec v$, starting at point $P$ at $t=0$, when does it hit $\triangle_{Q_{a}, Q_{b}, Q_{c}}$?
>
>$\huge \begin{align}
P = aQ_{a} + bQ_{b} + cQ_{c} + t\vec v
\end{align} $