A [[Basis]] of a [[Linear Subspace|Subspace]] $U$ is a [[Linear Independence|Linearly Independent]] [[Set]] of [[Basis Vectors|Vectors]] that [[Span]] $U$.
The [[Basis]] of a [[Linear Subspace|Subspace]] with only one element ([[Zero Linear Subspace]]), is the [[Empty Set]].
>[!example] Example: Finding a [[Basis]] of a [[Linear Subspace|Subspace]]
>$
>\let U = \left\{
>\vec x \in \R^5
>\left| \begin{split}
>x_{1}-2x_{3}+x_{4}-x_{5}&=0\\
>x_{1}+2x_{2}-x_{4}-3x_{5}&=0
>\end{split}
>\right.\right\}
>$
>Write a [[Basis]] of $U$.
>
>>[!check]- Solution
>>$\begin{align}
>>T: \R^5 &\to \R^{2} \\
>>T: \mat{x_{1}\\x_{2}\\x_{3}\\x_{4}\\x_{5}} &\mapsto \mat{
>>x_{1}-2x_{3}+x_{4}-x_{5}\\
>>x_{1}+2x_{2}-x_{4}-3x_{5}
>>}\\
>>
>>\therefore
>>\ker(T) &= U \\
>>\op{Nul}(A) &= U\\
>>\end{align}$
>>$\begin{align}
>>A &= \mat{
>>1&0&-2&1&1\\
>>1&2&0&-1&-3
>>} \\
>>\augmented{c|c}{A|\vec 0} &\sim
>>\augmented{ccccc|c}{1&0&-2&1&1&0\\1&2&0&-1&-3&0}\\
>>&\sim \augmented{ccccc|c}{1&0&-2&1&1&0\\0&1&-1&0&-1&0}\\
>>&\sim \begin{cases}
>>
>>x_{1}-2x_{3}+x_{4}+x_{5}&=0\\
>>x_{2}-x_{3}-x_{5} &=0
>>\end{cases}\\
>>&\sim \begin{cases}
>>x_{1}&=2t-s-r \\
>>x_{2}&=t+r\\
>>x_{3}&=t\\
>>x_{4}&=s\\
>>x_{5}&=r
>>\end{cases}
>>\end{align}$