A [[Logical Operator]] that is a stricter form of the [[Conditional]]: $\huge p \leftrightarrow q $ $\huge \begin{align} p &\leftrightarrow q \\ p &\iff q \\ \ba{p \to q} &\wedge \ba{q \to p} \\ \neg&\left[ p \xor q \right]\\ p &= q \end{align}$ The [[Biconditional]] is true only when $p$ and $q$ have the same [[Truth Value]], and can be ready as $p$ if and only if $q$. #### Truth Table | $p$ | $q$ | $p \iff q$ | | ----- | ----- | ---------- | | **F** | **F** | *T* | | **F** | *T* | **F** | | *T* | **F** | **F** | | *T* | *T* | *T* |