A [[Logical Operator]] that is a stricter form of the [[Conditional]]:
$\huge p \leftrightarrow q $
$\huge \begin{align}
p &\leftrightarrow q \\
p &\iff q \\
\ba{p \to q} &\wedge \ba{q \to p} \\
\neg&\left[ p \xor q \right]\\
p &= q
\end{align}$
The [[Biconditional]] is true only when $p$ and $q$ have the same [[Truth Value]], and can be ready as $p$ if and only if $q$.
#### Truth Table
| $p$ | $q$ | $p \iff q$ |
| ----- | ----- | ---------- |
| **F** | **F** | *T* |
| **F** | *T* | **F** |
| *T* | **F** | **F** |
| *T* | *T* | *T* |