A [[Category]] $\mathcal C$ is some collection of objects with [[Function|arrows]] between objects that compose [[Associative|associatively]].
>[!note] See Also: [[Category Theory]]
### Formal
The more formal definition is that a [[Category]] $\mathcal C$ must contain:
- A [[./Class|class]] of objects $\op{ob}(\mathcal C)$
- A [[Class|class]] of [[Morphism|Morphisms]] (arrows) $\op{mor(\mathcal C)}$.
- A form of [[Associative]] [[Composition]] between [[Morphism|Morphisms]]
Given [[Universal Quantifier|any]] two [[Morphism|Morphisms]] $f,g\in\op{mor}(\mathcal C)$ and [[Universal Quantifier|any]] pair of three objects $x,y,z\in\op{ob}(\mathcal C)$, they must satisfy:
$\huge
\begin{align}
f: x &\mapsto y \\
g: y &\mapsto z \\
f \circ g &: x \mapsto z
\end{align}
$
![[../../00 Asset Bank/Pasted image 20250419002923.png|invert_S]]