The [[Complex Conjugate|Conjugate]] of a [[Complex Numbers|Complex Number]] $z$, denoted by $\bar{z}$ or $z^*$ is defined as the [[Function|reflection]] of $z$ over the [[Real Numbers|Real]] axis. $\huge \begin{align} \pa{a+bi}^* &= a-bi \\ (re^{\theta i})^* &= re^{-\theta i} \end{align} $ ![[../../00 Asset Bank/Pasted image 20250406220532.png|invert_Sepia]] >[!tldr] [[Real Numbers]] [[Identity]] >The [[Complex Conjugate|Conjugate]] of a [[Real Numbers|Real Number]] $r$ is equal to $r$. >$\large \forall r \in \R : r^* = r $ The [[Complex Conjugate]] is [[Distributive]] over addition, subtraction, multiplication, and division. $\large \begin{align} (z+w)^* &= z^* + w^*\\ (z-w)^* &= z^* - w^*\\ (zw)^* &= z^* w^*\\ \left( \frac{z}{w} \right)^* &= \frac{z^*}{w^*} \text{if } w\neq 0\\ \end{align} $ The product of any [[Complex Numbers|Complex Number]] $z$ with its [[Complex Conjugate|Conjugate]] is equal to the [[Absolute Value]] of $z$ squared. $\huge zz^* = \lvert z \rvert ^2 $ [[Complex Conjugate|Conjugation]] is [[Commutative]] under [[Exponential Functions]] and [[Logorithmic Function]]. $\large \begin{align} (z^n)^* &= (z^*)^n \\ \exp(z^*) &= \exp(z)^* \\ \ln(z^*) &= \ln(z)^* \end{align} $