A [[Coordinate System]] for [[Vector|Vectors]] in a [[Linear Subspace|Subspace]] $A$ is constructed by any [[Basis]] $\mathcal B$ of a [[Linear Subspace|Subspace]].
Any [[Vector]] $\vec x\in A$ can be [[Linear Independence|uniquely]] written as a [[Linear Combination]] of $\mathcal B$.
>[!example] Example: [[Standard Basis]]
#### Notation
Describing a point or vector can be explicitly annotated with a [[Basis Vectors|Basis]],
>[!example] [[Vector]] written as a [[Linear Combination]]
> $P = \mat{a\\b\\c}_{S} = a\hat i + b \hat j + c \hat k $
If there is not subscript present, it is implied that its [[Basis]] is the [[Standard Basis]].
$\huge
\vec v_{\mathcal B} =
\mat{
\mathcal{\vec B}_{1} &
\mathcal{\vec B}_{2} &
\dots&
\mathcal{\vec B}_{n}
}\vec v
$
>[!tip] More Info: [[Change of Basis Matrix]]
#### Incomplete Basis’
$\huge \begin{align}
B &\in \Rn 3 \\
B &= \set{\vec u, \vec v, Q} \\ \\
\alpha: \mathbf{x} &= Q + t \vec u + s \vec v \\
\end{align}$
Even though $B$ is in $\Rn3$, it does not describe all of space in $\Rn3$ but only an *affine subspace* in $\Rn 3$.