![[../../00 Asset Bank/250px-Crossproduct.gif#invert_B]]
> [!bug] fucking kill me IB Physics PTSD
>
An operation for "multiplying" two [[Vector|Vectors]] that creates another [[Vector]] which is [[Orthogonal]] to both inputs, this operation is *exclusive* to $\Rn{3}$.
$\huge\begin{align*}
\let \vec u, \vec v &\in \R^{3}\\
\mat{v_{x}\\v_y\\v_{z}} &=
\mat{u_yv_{z}-u_zv_y\\u_zv_x-u_xv_z\\u_xv_y-u_yv_{x}}\in\R^3\\
\vec u &\perp \vec u \times \vec v \\
\vec v &\perp \vec u \times \vec v
\end{align*}$
> [!tip] Rules of Distrobution
> All rules of distrobution familiar with standard multiplication apply.
>
> $\huge \let \vec u, \vec v, \vec w \in \R^3$
> $\huge
> \vec u \times (\vec v + \vec w) = \vec u \times \vec v + \vec u \times \vec w
> $
>
> $\huge \let k \in \R$
>
> $\huge$
>
> Cross products are **anti communative**
> $\huge \vec u \times \vec v = -\vec v \times \vec u$
>
> $\huge \vec w \times \paren{\vec u \times \vec v}
> \ne \paren{\vec u \times \vec v}\times \vec w
> $
# Properties
The cross product between two vectors finds a vector [[Orthogonal]] to both vectors.
$\huge\begin{align*}
\let \vec u, \vec v, \vec w &\in \R^{3}\\
\vec w &= \vec u \times \vec w \\
\vec w &\perp\vec u \\
\vec w &\perp\vec v \\
\end{align*}$
### Magnitude
$\huge \norm{\vec u \times \vec v } = \norms{\vec v}\norms{\vec u} \sin \theta $
### Relation with 0 Vector
All [[Vector|vectors]] crossed with itself will equal the [[Zero Vector]].
$\huge \let \vec v \in \R^{3}$
$\huge \vec 0 \times \vec v $
$\huge \vec v \times \vec v = \vec 0 $
# Ways to solve
- Memorize the formula
$\huge \vec u \times \vec =
\mat{u_yv_{z}-u_zv_y\\u_zv_x-u_xv_z\\u_xv_y-u_yv_{x}}\in\R^3
$
- Ways with basis
$\huge\begin{align*}
\hat i &= \mat{1\\0\\0} \\
\hat j &= \mat{0\\1\\0} \\
\hat k &= \mat{0\\0\\1} \\
\end{align*}
$
$\huge\begin{matrix}
\hat i \times \hat i =\vec 0
& \hat i \times \hat j = \hat k
& \hat i \times \hat k = -\hat j \\
\hat j \times \hat i =-\hat k
& \hat j \times \hat j = \hat 0
& \hat j \times \hat k =-\hat i \\
\hat k \times \hat i =\hat j
& \hat k \times \hat j = -\hat i
& \hat k \times \hat k =-\vec 0 \\
\end{matrix}
$
### Textbook solution
$\huge\begin{align*}
\mat{u_x\\u_y\\u_{z}} \times \mat{v_x\\v_y\\v_{z}} &=
\left|\begin{matrix}
\hat i & \hat j & \hat k \\
u_{x}&u_y&u_z \\
v_x&v_y&v_z
\end{matrix}\right| \\
&= \vmat{u_y&u_z\\v_y&v_{z}}\vec z
- \vmat{u_x&u_z\\v_x&v_{z}}\vec j
+ \vmat{u_x&u_y\\v_x&v_{y}}\vec k
\end{align*}$
> [!important] $\vec U \vec V$ rays 🤯 (use sunscreen)