A unary [[Operation]] upon a [[Vector]] $\vec u \in \Rn{3}$ to create a [[Matrix|Matrix]] with the property that [[Matrix Multiplication|Multiplying]] a [[Vector]] $\vec v$ by that matrix produces the same effect as taking the [[Cross Product]] between $\vec u$ and $\vec v$:
$\huge \begin{align}
\Lambda\vec u &= \mat{
0 & -u_{z} & u_{y}\\
u_{z} & 0 & -u_{x} \\
-u_{y} & u_{x} & 0
}
\end{align}$
$\huge \begin{align}
\pa{\Lambda \vec u} \vec v = \vec u \times \vec v
\end{align}$