![[../../00 Asset Bank/Pasted image 20240926150611.png|invert_B]]
To calculate the [[Volume]] of a cylindricaly [[Symmetric]] shape, you can model the volume as a [[Definite Integral]] of a modified version of $f(x)$, where $f(x)$ is the height of the volume when $x$ away from the center.
$\huge
V =
2\pi \int_{a}^b xf(x)\d x
$
>[!example]
>Let $R$ be the region bounded by $y=-x+2$, $y=\sqrt{x}$ and $x=0$. $R$ is rotated about the $y$ [[Axis]] to form a solid shape $S$. Find the volume of $S$.
>>[!check]- Solution
>>$\huge\begin{align}
-x+2 &= \sqrt{x} \\
(2-x)^2 &= x \\
x^2-4x+4&=x\\
x^2-5x+4&=0\\
(x-1)(x-4) &= 0\\
x &= \set{1, 4} \\ \\
h(x) &= 2-x-\sqrt x \\
V &= 2\pi\int_{0}^1 x\pa{2-x-\sqrt{x}} \d x \\
&= 2\pi \int_{0}^1 \pa{2x-x^2-x^{\frac{3}{2}}} \d x\\
&\cdots\\
&= \frac{8\pi}{15} \op{units}^3
\end{align}
>>$
>[!example]
>Let $R$ be the region bounded by $y=\sqrt{x-3}$, $y=0$ and $x=7$. $R$ is rotated about the $x$-[[Axis]] to form a solid $S$, find the [[Volume]] of $S$.
>>[!check]- Solution
>>$\huge \begin{align}
>>y &= \sqrt{x-3} \\
>>x&= y^2 + 3 \\ \\
>>r(y) &= y \\
>>h(y) &= 7-(y^2+3) \\
>>&= 4-y^2\\
>>\\
>>V &= 2\pi \int_{0}^{\sqrt{7-3}} { r(y)h(y) }\d y\\
>>&= 2\pi \int_{0}^{2} y\pa{ 4-y^2 }\d y\\
>>&= 2\pi \int_{0}^{2} \pa{4y-y^3}\d y\\
>>&= 2\pi\pa{8-4}\\
>>&=8\pi \op{units}^3
>>\end{align}$