$ \huge \begin{align*}
y &= x^n \\
y' &= nx^{n-1}
\end{align*}$
## Proof / Reasoning
### Difference between 2 $n$th powers rule
If $a$ and $b$ are real numbers, and $n$ is a positive integer, then
$
a^n-b^n=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^2+\ldots+a b^{n-2}+b^{n-1}\right)
$
### Proof
$\begin{align*}
f(x) &= x^n \\
\frac{df}{dx}(x) &= \lim_{h\to 0}\frac{f(x+h) - f(x)}{h}
\\
&= \lim_{h\to 0}\frac{(x+h)^n - x^n}{h}
\\
\frac{df}{dx}(x) &= \lim _{h \rightarrow 0} \frac{((x+h)-x)\left((x+h)^{n-1}+(x+h)^{n-2} x+\ldots+x^{n-1})\right)}{h}\\
& =\lim _{h \rightarrow 0} \frac{h\left[(x+h)^{n-1}+(x+h)^{n-2} x+\ldots+x^{n-1}\right]}{h} \\
& =\lim _{h \rightarrow 0}\left[(x+h)^{n-1}+(x+h)^{n-2} x+\ldots+x^{n-1}\right]
\\
&= x^{n-1}+x^{n-1}+\ldots+x^{n-1}\\
\frac{df}{dx}(x) &= nx^{n-1}
\end{align*}$