One of the two ways to 'multiply' two [[Vector|vectors]].
$\huge\begin{align*}
\vec u \cdot \vec v
\end{align*}$
The dot product between two [[Vector|vectors]] is a [[Scalar]], the two vectors **must** have the same dimension.
$\huge\begin{align*}
\forall \vec{u},\vec{v} &\in \R^n \\
\vec u \cdot \vec v &=
u_0v_{0}+u_1v_{1}+\cdots+u_n+v_{n}\\
&=\sum_{k=0}^{n} u_{k}v_{k}
\\
\\
\vec u \cdot \vec v &=
\norms{\vec u}
\norms{\vec v}
\cos (\theta) \\
\vec{v}\cdot\vec{v}&= \norms{\vec{v}}^2
\end{align*}$
Where $\theta$ is the smallest angle between $\vec u$ and $\vec v$.
An alternative definition that extends better when working with higher dimensions.
$\huge \vec u \cdot \vec v = {\vec u}^\intercal \vec v $
Where $^\intercal$ represents the [[Matrix Transpose|Transpose]] of the [[Vector|Column Vector]].
> [!note] Computation
> *it is more computationally efficient to divide by product of magnitudes instead of normalizing the vectors*
*In general*, the dot product of two vectors measures how "big" they are, and how much they "agree" with each other.
## Angles
$\huge{\vec{u} \cdot \vec{v} > 0}$ if $\vec v$ and $\vec u$ are *acute*.
$\huge{\vec{u} \cdot \vec{v} < 0}$ if $\vec v$ and $\vec u$ are *obtuse*.
$\huge \vec{ u} \cdot \vec{v} = 0 \iff \vec{u} \perp \vec{v}$
*If and only if* the two vectors are [[Orthogonal]], then the dot product *will only be 0*.
$\huge\begin{align*}
\theta &= 90\degree \\
\vec u \cdot \vec v &=
\parallel \vec u\parallel
\parallel \vec v\parallel
\cos (90\degree)
\\ &=
\parallel \vec u\parallel
\parallel \vec v\parallel
0 \\
&= 0
\end{align*}$
If the two vectors are a $180\degree$ apart, then they their dot product is -1.
### Getting the angle
The dot product can be rearranged as:
$\huge\begin{align*}
\cos \theta &= \frac{\vec u \cdot \vec v }{\parallel \vec u \parallel \parallel \vec v \parallel} \\
\theta &= \arccos \paren{\frac{\vec u \cdot \vec v }{\parallel \vec u \parallel \parallel \vec v \parallel} }\\
\cos \theta &= \hat u \cdot \hat v \\
\theta &= \arccos \paren{\hat u \cdot \hat v}\\
\end{align*}$
$\huge\begin{align*}
\let a &= \norms{\vec u}^{2}\\
\let b &= \norms{\vec v}^{2}\\
\norms{\vec u}\norms{\vec v} &= \sqrt{a}\sqrt{b}
&= \sqrt{ab} \\
&= \sqrt{\norms{\vec v}^{2}\norms{\vec u}^2}
\end{align*}$
## Relation to 0 Vector
$\huge\vec{0} \cdot \vec{v} = 0$
*Most of the time*, it makes sense to count this as the [[Zero Vector]] being [[Orthogonal]] to all other vectors.
>[!note] Physics Connection
>$\huge W=Fd$
>Both *work* and *distance* are a vector, which means this formula can be translated to $W=F\cdot d$.