$\huge
\begin{split}E_{\lambda}
&= \setbuild{\vec x \in \R^n}{A\vec x =\lambda \vec x}\\
&= \op{Nul}(A-\lambda I)
\end{split}
$
The [[Eigenspace]] of a [[Matrix]] $A$ is a [[Linear Subspace]] of all [[Eigenvector|Eigenvectors]] of $A$ with an [[Eigenvalue]] of $\lambda$.
The [[Eigenspace]] is equal to the [[Set]] of all solutions to the [[Homogeneous Equation]] $(A-I)\vec x = \vec 0$ / the [[Nullspace]] of $A-I$.
### Basis
Given $A\in M_{n\times n}$:
- Find the [[Eigenvalue|Eigenvalues]] $\lambda_{1},\dots,\lambda_{k}$ of $A$.
- Find a [[Basis]] of each [[Eigenspace]] $E_{\lambda_{1}}, \dots E_{\lambda_{m}}$
- Make a [[Set]] of the [[Vector|Vectors]] from all of these bases.
This [[Set]] will always be [[Linear Independence|Linearly Independent]].
$\begin{align}
A\vec v_{1}&=\vec v_{1}\\
A\vec v_{2} &= 3\vec v_{2}\\
A\vec v_{3} &= 4\vec v_{3}\\
\end{align}
$
$\begin{align}
\let c_{1}, c_{2}, c_{3} &\in \R :\\
c_{1}\vec v_{1} + c_{2}\vec v_{2} + c_{3}\vec v_{3} &= \vec 0
\end{align}
$
$
\begin{align}
(A-I)(c_{1}\vec v_{1} + c_{2}\vec v_{2} + c_{3}\vec v_{3}) &= (A-I)\vec 0\\
c_{1}(A\vec v_{1}-\vec v_{1}) +
c_{2}(A\vec v_{2}-\vec v_{2}) +
c_{3}(A\vec v_{3}-\vec v_{3})
&= \vec 0 \\
c_{2}2\vec v_{2} +
c_{3}(A\vec v_{3}-\vec v_{3})
&= \vec 0\\
(A-\underbrace{3}_{\lambda_{2}}I)(c_{2}(A\vec v_{2}-\vec v_{2}) +
c_{3}(A\vec v_{3}-\vec v_{3}) )
&= \vec 0\\
c_{3}(A\vec v_{3}- 3\vec v_{3})
&= \vec 0
\end{align}
$
>[!example]
> Find the [[Eigenvalue|Eigenvalues]], make a [[Basis]] for each [[Eigenspace]], wite $A$ in [[Eigendecomposition|Diagonal]] form
>
>$\large A = \mat{3&1\\4&2} $
>>[!check]- Solution
>>$\large \begin{align}
>>\det(A-\lambda I) &= 0 \\
>>
>>\det{\mat{ 3-\lambda&1\\4&2-\lambda }} &= (3-\lambda)(2-\lambda)-4
>>\\
>>&= \lambda^2 -5t+6-4\\
>>&= \lambda^2 -5t+2\\
>>\lambda &= \frac{5}{2} \pm \frac{\sqrt{17}}{2}
>>\end{align}$
>>$\large \begin{align}
>>E_{\lambda_{0}} &= \op{Nul}\pa{A-\left( \frac{5}{2}-\frac{\sqrt{ 17 }}{2} \right)I}\\
>>&\sim
>>\augmented{cc|c}{
>>\frac{1}{2} + \frac{\sqrt{ 17 }}{2} & 1 & 0\\
>>4 & -\frac{1}{2}+ \frac{\sqrt{ 17 }}{2} &0
>>}\\
>>&\sim \augmented{cc|c}{
>>1 & -\frac{1}{8}+ \frac{\sqrt{ 17 }}{8} & 0\\
>>0&0&0
>>}\\
>>&\sim \begin{cases}
>>x_{1} + \left( -\frac{1}{8} + \frac{\sqrt{ 17 }}{2} \right) &=0\\
>>0&=0
>>\end{cases}\\
>>&\sim \begin{cases}
>>x_{1}&= \left( \frac{1}{8}+ \frac{\sqrt{ 17 }}{2} \right) t\\
>>x_{2}&= t
>>\end{cases}\\
>>
>>E_{\lambda_{0}} &= \op{span}\left(\mat{ 1+\sqrt{ 17 }\\ 8 }\right) \\
>>\end{align}$
>>
>>Following the same logic for $\lambda_{1}$ :
>>$\large
>>E_{\lambda_{1}} = \op{span}\left(\mat{ 1-\sqrt{ 17 }\\ 8 }\right)
>>$
>>
>>$\large
>>A =
>>\mat{
>>\vec \lambda_{0} & \vec \lambda_{1}
>>}
>>\mat{
>>\lambda_{0} & 0 \\0&\lambda_{1}
>>}
>>\mat{
>>\vec \lambda_{0} & \vec \lambda_{1}
>>}^{-1} \\
>>$
>>$\tiny
>>A=\mat{
>>1+\frac{\sqrt{ 17 }}{8} & 1- \frac{\sqrt{ 17 }}{8}\\
>>8 & 8
>>}
>>\mat{
>>\frac{5}{2} - \frac{\sqrt{ 17 }}{2} & 0 \\
>>0&\frac{5}{2} + \frac{\sqrt{ 17 }}{2} \\
>>}
>>\mat{
>>1+\frac{\sqrt{ 17 }}{8} & 1- \frac{\sqrt{ 17 }}{8}\\
>>8 & 8
>>}^{-1}
>>$
>[!example]
>$
>A= \mat{ 2 & -1 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 1}
>$
>>[!check]- Solution
>>$
>>\begin{align}
>>
>>0&= \det(A- \lambda I) \\
>>&=\mat{
>>2-\lambda&-1&1\\
>>1& -1-\lambda & 0 \\
>>0 & 1 & 1- \lambda
>>}\\
>>&=
>>
>>0\left|\array{ -1&1& \\-1-\lambda & 0 } \right|
>>-\left|\array{
>>2-\lambda&1\\1&0
>>}\right|
>>+
>>(1-t)
>>\left|\array{
>>2-t & -1 \\
>>1 & -1-t
>>} \right| \\
>>&=
>>
>>-\pa{(2-t)0-1} + (1-t)((2-t)(-1-t)-(-1)) \\
>>&= \cdots \text{ Trust me bro } \cdots \\
>>&= (\lambda-0)(\lambda-(-1+\sqrt{ 2 }))( \lambda - (-1- \sqrt{ 2 }) ) \\
>> \lambda &= \set{
>> 1 + \sqrt{ 2 } ,
>> 1 - \sqrt{ 2 } ,
>> 0
>> }
>>
>>\end{align}
>>$
>>
>>$
>>\begin{align}
>>E_{o} &= \op{Nul}(A-0I) \\
>>&= \cdots \\
>>&= \op{span}\pa{\mat{-1\\-1\\1}}
>>\end{align}
>>$