Some [[Real Numbers|Real Number]] $\lambda$ is an [[Eigenvalue]] of a [[Matrix]] $A$ if the [[Determinant]] of $A$ minus the [[Identity Matrix]] is 0.
The [[Set]] of all [[Eigenvalue|Eigenvalues]] of $A$.
$\huge
\lambda_{A}=\setbuild{ \lambda\in\R\,}{\, \det(A-\lambda I) =0}
$
Solving for all [[Eigenvalue|Eigenvalues]] $\lambda$ for a $n\times n$ [[Matrix]] with the equation $\det(A-\lambda I)=0$ will lead to the [[Characteristic Polynomial]] of $A$ of degree $n$.
If the [[Roots]] of the [[Characteristic Polynomial]] repeat, the convention is that you have multiple [[Eigenvalue|Eigenvalues]] with the same number.
>[!info] Useful fact
The [[Trace]] of a [[Matrix]] will always be the sum of its [[Eigenvalue|Eigenvalues]].
gonna use the version with $\Lambda$ because it looks cooler
$\huge \mathrm{tr}(A) = \lambda_{1}+\lambda_{2} +\dots+\lambda_{n} $
>[!example]
>Solve for all [[Eigenvalue|Eigenvalues]]:
>$
>A=\mat{1&-1\\-6&0}
>$
>>[!check]- Solution
>> $T_{A} : \R^2 \to \R^2 \therefore$ the [[Characteristic Polynomial]] has degree $2$.
>>
>>$
>>\begin{align}
>>\det(A-\lambda I) &= 0\\
>>
>>\det\pa{
>>\mat{(
>>1-\lambda & -1\\
>>-6 & -\lambda
>>}
>>} &= 0\\
>>
>>(1-\lambda)(-\lambda) - (-6)(-1) &= 0 \\
>>\lambda^2 - \lambda - 6 &= 0
>>\end{align}
>>$
>[!example]
>Solve for all [[Eigenvalue|Eigenvalues]]
>$
>A = \mat{
>4&0&1&1\\
>0&1&3&0\\
>0&0&-1&1\\
>0&0&0&2
>}
>$
>>[!check]- Solution
>>$ \begin{align}
>>
>>0&=\det(A-\lambda I) \\
>>&= \mat{
>>4-\lambda &0&1&1\\
>>0&1-\lambda&3&0\\
>>0&0&-1-\lambda&1\\
>>0&0&0&2-\lambda
>>}\\
>>&= (4-\lambda)(1-\lambda)(-1-\lambda)(2-\lambda) \\
>>\lambda &= \set{
>>4,1,-1,2
>>}
>>\end{align}
>>$
### [[Complex Numbers|Complex]] [[Eigenvalue|Eigenvalues]]
Any [[Matrix]] $A$ with [[Real Numbers|Real Number]] values that has a [[Complex Numbers|Complex]] [[Eigenvalue]], with always come in [[Complex Conjugate]]. In the [[Set]] of all [[Eigenvalue|Eigenvalues]] of a [[Matrix]], you will never find a [[Complex Numbers|Complex]] [[Eigenvalue]] without its [[Complex Conjugate]].
A [[Complex Numbers|Complex]] [[Eigenvalue]] appears when the [[Function|Transformation]] has no [[Trivial|nontrivial]] fixed points, such as [[Rotation Transformation|Rotation]]. The addition of $i$ can be thought of forcing in a way of rotation with [[Eigenvalue|Eigenvalues]]/[[Eigenvector|Eigenvectors]].
>[!example] [[Eigenvalue|Eigenvalues]] of a 90 degree [[Rotation Transformation|Rotation Matrix]]
>$\large \begin{align}
>A&=\mat{0&-1\\1&0} \\
>\det(A-\lambda I) &= 0\\
>\sim \lambda^2 +1 &= 0\\
>\lambda &= \pm i
>\end{align} $