>[!example]
Expressing 2D [[Rotation Transformation|rotation]] as a [[Change of Basis Matrix|change of basis]] in $\R^2$:
>$\huge \begin{align}
>
>{}_{\alpha}P_{\beta} &= \mat{ [u_{1}]_{\alpha} & [u_{2}]_{\alpha}} \\
>
>\alpha &= \braket{\hat i, \hat j} \\
>\beta &= \braket{\hat i', \hat j'} \\
>\hat i ' &= \hat i \cos \theta + \hat j \sin \theta \\
>\hat j ' &= -\hat j \sin \theta + \hat j \cos \theta \\
>
>{}_\alpha P_{\beta} &= \mat{ \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta } \\
>
>{}_{\alpha}P_{\beta} &={}_{\alpha}P_{\beta}^{-1}
>
>\end{align}$
### Rotations in $\R^3$ as [[Change of Basis for Transformations|Change of Basis]]
Let $\mathcal Z_{\phi}$ denote precesion around the around the $z$-axis by $\phi$, such that $z=z'$
$\huge
\begin{matrix}
\alpha = \set{ \hat i, \hat j, \hat k }
& \beta = \set{ \hat i', \hat j', \hat k' }
\end{matrix}
\begin{align}\\
\end{align}$
$\huge \begin{align} \begin{cases}
\hat i' = \hat i \cos \phi + \hat j \sin \phi \\
\hat j' = -\hat i \sin \phi + \hat j \cos \phi \\
\hat k' = \hat k \\
\end{cases} \end{align}$
$\huge \begin{align}
P_{\beta \to \alpha} &= \mat{
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1 } \\
\pa{P_{\alpha \to \beta}}^{-1} &=
\pa{P_{\beta \to \alpha}}^{\intercal} &
\\&= \mat{
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
} \\
&= \mathcal Z_{\phi}
\end{align}$
Which leads us to the definition
$\huge \mathcal Z_{\phi} =
\mat{
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
} \\ $
We can define $\mathcal X_{\theta}$ as another [[Euler Angles|Euler Rotation]], which is to say that $\mathcal X_{\theta}$ is rotation about the $x$-axis by $\theta$, this can be derived with similar reasoning as $\mathcal Z_{\phi}$.
$\huge \begin{align}
\mathcal X_{\theta} &= \mat{
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
}
\end{align}$
We can define $Z_{\psi}$ which is rotation around the $z$-axis with an angle of $\psi$.
$\huge \begin{align}
Z_{\psi} &= \mat{
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
}
\end{align}
$
These terms together form Euler Angles
$\huge (\phi,\theta,\psi) = \text{Euler Angles} $
You can use this system to perform general rotations with euler angles.
$\huge \begin{align}
P_{\alpha \to \delta} &=
P_{\gamma \to \delta}
P_{\beta \to \gamma}
P_{\alpha \to \beta}
\\
P_{\alpha \to \delta} &= \mathcal Z_{\psi} \mathcal X_{\theta} \mathcal Z_{\phi}
\end{align} $
We could also add another rotation about the $y$-axis by an angle of $\beta$, to account for some faults / [[Gimble Lock]] using euler angles.
$\huge
\mathcal Y_{\beta} = \mat{
\cos \beta &0& -\sin \beta \\
0&1&0 \\
\sin \beta &0& \cos \beta
} $
Which is used in [[Tait-Bryan Angles]].