Suppose that a screen is $160$ pixel wide and $100$ pixels high. Recall that [[Screen Space]] has a $y$ axis that pionts downwards. *(a).* Find the $3\times 3$ [[../Homogeneous Coordinates|Homogeneous Coordinates]] [[../Matrix]] that maps the [[Screen Space#Rectangle|Screen Space Rectangle]] to the [[Standard Square]]. $\huge S_{\left< -\frac{1}{80}, -\frac{1}{50} \right>} \cdot T_{\left< -80,-50 \right>} = \boxed{ \mat{ \frac{1}{80} & 0 & -1 \\ 0 & -\frac{1}{50} & 1 \\ 0 & 0 & 1 }} = S_{c} $ *(b).* Find the [[Point]] inside of the [[Standard Square]] that corresponds to the [[../Point|Point]] with screen coordinates $(130, 30)$ $\huge S_{c}\mat{130\\30\\1} = \mat{ \frac{5}{8} \\\frac{2}{5} \\ 1 } $ *(c).* Find the [[Point]] inside the standard square that corresponds to the [[Point]] with screen coordinates $(70, 70)$ $\huge S_{c}\mat{70\\70\\1} = \mat{ -\frac{1}{8}\\ -\frac{2}{5}\\ 1 } $