Find the [[../Area between Curves|Area between Curves]] between $f(x)=3\sin x$ and $g(x)=4\cos x$ in the range $\ba{0, 0.9\pi}$
$\huge
\begin{align}
f(0) &< g(0) \\
3\sin x - 4 \cos x &= 0 \\
\frac{3}{4}\sin x &= \cos x \\
\\
\frac{3\tan x}{4} &= 1\\
\tan x &= \frac{4}{3} \\
\let r &= \arctan \frac{4}{3} \\ \\
A &=\int_{0}^{r} \pa{4 \cos x - 3\sin x}\d x
+
\int_{r}^{0.9\pi} \pa{3\sin x-4\cos x}\d x
\\
&=
\pa{-4\sin r -3\cos r} - \pa{ -3 } +
\pa{3\cos 0.9\pi + 4\sin 0.9\pi } -
\pa{3\cos r + 4\sin r} \\
&=
3 -4\sin r -3\cos r +
3\cos 0.9\pi + 4\sin 0.9\pi -
3\cos r - 4\sin r \\
&= 3
-8\sin r -6 \cos r+3\cos 0.9\pi + 4\sin 0.9\pi
\\
&= 3
-8\sin (\arctan (\frac{4}{3} )) -6 \cos (\arctan (\frac{4}{3}))+3\cos 0.9\pi + 4\sin 0.9\pi
\end{align}
$
$\huge \begin{align}
\end{align}$