Use the method of [[../Cylindrical Shell Volumes|Cylindrical Shells]] to find the volume of the region bounded by the curves $x+y=3$ and $x=4-(y-1)^2$ about the $x-axis$.
$\huge \begin{align}
x&= 3-y \\
x &=4-(y-1)^2 \\
\\
r(y) &= y\\
h(y) &= 4-(y-1)^2-3+y\\
&= 1-(y-1)^2 + y \\
&= 1-y^2+2y-1+y \\
&= -y^2 + 3y \\
\\
3-y &=4-(y-1)^2 \\
(y-1)^2-y &= 1 \\
y^2 -2y+1-y &= 1 \\
y^2-3y&= 0 \\
y &=\set{0, 3} \\
\\
\end{align}$
$\huge \begin{align}
V &= 2\pi \int_{0}^{3}y\pa{-y^2+3y}\d y \\
&=2\pi \int_{0}^3\pa{-y^3+3y^2}\d y \\
&=2\pi
\end{align}
$