$\huge \begin{align}
f'(x) &= 6^x \\
f(4) &= -5 \\
f(x)&= \int_{0}^{x} e^{x\ln 6}\d x \\
&= e^{x\ln 6} \frac{1}{\ln 6} + C\\
\\
f(4) = -5 &= \frac{e^{4\ln 6}}{\ln 6} + C \\
\\
C &=-5 -\frac{e^{4\ln 6}}{\ln 6} \\
f(x) &= \frac{e^{x\ln{6}}}{\ln 6} - 5 - \frac{e^{4\ln 6}}{\ln 6}
\end{align}$