$\huge \begin{align}
\int_{5}^{10} \frac{8}{x-1}\d x &=
10\int_{5}^{10} (x-1)^{-1}\d x \\
\\
\let u &= x-1\\
\let \d u &= \d x \\
\\
&= 8\int_{5}^{10} u^{-1}\d u \\
&= 8\pa{\ln (x-1) \big\rvert_{5} ^{10}} \\
&= 8\pa{\ln(9)-\ln 5}\\
&= \boxed{7\ln \frac{9}{5}}
\end{align}$