$\huge \begin{align}
A &=\int_{2}^{e} \frac{\d x}{ 2x \pa{\ln x}^2 } \\
f(x) &= \int \frac{\d x}{2x(\ln x)^2}\\
\\
\let u &= \ln(x) \\
\let \d u &= x^{-1}\\
\\
f(x)&=\int \frac{1}{2} u^{-2} \d u \\
&= -\frac{1}{2} u^{-1} \d u \\
&= -\frac{1}{2\ln x}\\
\\
f(e)-f(2) &=
-\frac{1}{2\ln e}-
-\frac{1}{2\ln 2}
\\
&=
-\frac{1}{2}\pa{1- \frac{1}{\ln 2}}
\\
\end{align}$