$\huge
\int x^{6}\sinh\!\left(x^{7}+6\right) \, \d x
$
$\huge \begin{align}
\let u &=x^7+6\\
\let \d u &= 7x^6 \\
\\
\int x^{6}\sinh\!\left(x^{7}+6\right) \, \d x &=
\frac{1}{7}\int\sinh(u)\d u \\
&=\frac{1}{7}\cosh(u)+C \\
&=\frac{1}{7}\cosh(x^7+6)+C \\
\end{align}$