$\huge
\int 5\tanh\!\left(x\right)\mathop{\rm sech}\nolimits^{2}\!\left(x\right) \, dx
$
$\huge \begin{align}
\let u &= \tanh(x) \\
\let \d u &= \op{sech}^2x \\
\\
\int 5\tanh\!\left(x\right)\mathop{\rm sech}\nolimits^{2}\!\left(x\right) \, dx
&= 5\int u\d u \\
&= \frac{5}{2}u^2 +C\\
&= \frac{5}{2} \tanh^2 x+C
\end{align}
$