$\huge
\int \frac{4\cosh\!\left(5x\right)}{\sinh\!\left(5x\right)} \, \d x
$
$\huge \begin{align}
\let u &= \sinh(5x) \\
\let \d u&= \frac{1}{5} \cosh(5x)\d x\\
\\
\int \frac{4\cosh\!\left(5x\right)}{\sinh\!\left(5x\right)} \, \d x
&=
\frac{4}{5} \int u^{-1}\d u\\
&=\frac{4}{5} \ln|u|+C\\
&= \frac{4}{5} \ln|\sinh(5x)|
\end{align}
$