$\huge \begin{align}
\displaystyle\int_{4}^{\,\infty} \frac{\ln\!\left(x\right)}{x} \d x &=
\lim_{t\to \infty}
\int_{4}^{t} \frac{\ln x}{x}\d x \\
\\\let u &= \ln(x) \\
\let \d u &= \frac{1}{x}\d \ x
\\ &=\lim_{t\to \infty} \int_{4}^{t} {u \d u}
\\&=\lim_{t\to \infty}
\ba{ \frac{1}{2} u^2 }_{4}^{t} \\
\\&=\lim_{t\to \infty}
\ba{ \frac{1}{2} u^2 }_{4}^{t} \\
\\&=\lim_{t\to \infty}
\ba{ \frac{1}{2} \pa{\ln x}^2 }_{4}^{t} \\
\\&=\frac{1}{2} \lim_{t\to \infty} { {\ln 2x} } \big\rvert_{4}^{t} \\
\\&\text{Divergent.}
\end{align} $