A famous [[Recurrence Relation]] / [[Sequence]] where $F_n$ is the sum of the previous two elements. $ \huge F_{n} = F_{n-1} + F_{n-2} $ Where $F_0=0$ and $F_{1}=1$. $ \huge F_{n} = \frac{1}{\sqrt{ 5 }}\pa{ \phi^n - \pa{\frac{-1}{\phi}}^n } $ Where $\phi$ is the [[Golden Ratio]]. ### Properties The limit of the ratio $\frac{F_{n+1}}{F_{n}}$ is the [[Golden Ratio]] $\phi$. $\huge \lim_{ n \to \infty } \frac{F_{n+1}}{F_{n}} = \phi $ >[!tldr]- Proof >$\small \begin{align} > >\lim_{ n \to \infty } \frac{F_{n+1}}{F_{n}} &= >\lim_{ n \to \infty } > \frac{{\frac{1}{\sqrt{ 5 }}\pa{ \phi^{n+1} - \pa{\frac{-1}{\phi}}^{n+1} }}}{{\frac{1}{\sqrt{ 5 }}\pa{ \phi^{n} - \pa{\frac{-1}{\phi}}^{n} }}} \\ > >&= \lim_{ n \to \infty } \frac{\phi^{n+1} - \pa{\frac{-1}{\phi}}^{n+1}}{\phi^{n} - \pa{\frac{-1}{\phi}}^{n}} \\ > >&= \lim_{ n \to \infty } \frac{ > >\phi^{n+1} - \phi\pa{-\frac{1}{\phi}}^n + > >\phi\pa{-\frac{1}{\phi}}^n -\pa{-\frac{1}{\phi}}^{n+1} >}{ >\phi^{n} - \pa{\frac{-1}{\phi}}^{n} >} \\ > >&= \lim_{ n \to \infty } > >\frac{ > >\phi\pa{\phi^n - \pa{-\frac{1}{\phi}}^n} + \left( -\frac{1}{\phi} \right)^n\pa{ \phi-\pa{-\frac{1}{\phi}} } > >}{ \phi^{n} - \pa{\frac{-1}{\phi}}^{n} } \\ >&=\lim_{ n \to \infty } > >\frac{ >\phi\left( \phi^n - \pa{-\frac{1}{\phi}}^n \right) >}{ >\phi^n - \pa{{-\frac{1}{\phi}}}^n > >} >+ >\frac{ >\left( -\frac{1}{\phi} \right)^n\pa{ \phi+{\frac{1}{\phi}} } >}{ >\phi^n - \pa{{-\frac{1}{\phi}}}^n >} \\ >&= \lim_{ n \to \infty } >\phi >+ >\frac{ >\left( -\frac{1}{\phi} \right)^n\pa{ \phi+{\frac{1}{\phi}} } >}{ >\phi^n - \pa{{-\frac{1}{\phi}}}^n >} \\ > >&= \lim_{ n \to \infty } >\phi+ > >\frac{ >\left( -\frac{1}{\phi} \right)^n\pa{ \phi+{\frac{1}{\phi}} } >}{ >\phi^n - \pa{{-\frac{1}{\phi}}}^n >} > >\cdot \frac{ >\frac{1}{\pa{-\frac{1}{\phi}}^n} >}{ >\frac{1}{\pa{-\frac{1}{\phi}}^n} >} \\ >&= \lim_{ n \to \infty } > >\phi + \frac{\phi+\frac{1}{\phi}}{ > >\frac{\phi^n}{\pa{-\frac{1}{\phi}}^n} >-1 > >}\\ > >&= \lim_{ n \to \infty } > >\phi + \frac{\phi+\frac{1}{\phi}}{ > >\pa{\frac{\phi}{{-\frac{1}{\phi}}}}^n >-1 > >}\\ > >&= \lim_{ n \to \infty } >\phi + >\frac{\sqrt{ 5 }}{ >\pa{- \frac{3+\sqrt{ 5 }}{2} }^n - 1 >}\\ >&= \lim_{ n \to \infty } >\phi + > >\lim_{ n \to \infty } >\frac{\sqrt{ 5 }}{ >\pa{- \frac{3+\sqrt{ 5 }}{2} }^n - 1 >} \\ >&= \phi + 0 \\ >&= \phi > > >\end{align} >$ All consecutive [[Fibonacci Sequence|Fibonacci Numbers]] are [[Relatively Prime]]. $ \huge \gcd(F_{n},F_{n+1})=1 $