With a given [[Function]], $f: X\to Y$, if $Y \subseteq X$ then the function can be [[Composition|Composed]] multiple times.
$\huge
\begin{align}
f^2(x) &= (f\circ f)(x)\\
f^3(x) &= (f\circ f\circ f)(x) \\
f^n(x) &= \underbrace{(f \circ f \circ \cdots )}_{n \text{ times}}(x) \\
f^n(x) &= \pa{\mathop{\bigcirc}_{i=1}^{n} f}(x)
\end{align}
$
When $n$ is 0 for any [[Function]], that function $f^{0}(x)$ is the [[Identity]] of $f