>[!info] Definition
>$\huge \let f(x)$ be [[Continuous]] on $\huge [a,b]$.
$\huge \let F(x)$ be any [[Anti-Derivative]] of $\huge f(x)$.
*Then* $\huge
\begin{align}
\int_{a}^b f(x)\d{x} &= F(b) - F(a) \\
&=F(x) \vert_{a}^b
\end{align}$
The [[Fundamental Theorem of Calculus]] describes the nature of [[Derivative|Derivation]] and [[Integration]], and how they are Opposites.
>[!example]
>$\huge
\begin{align}
&\int _{ 0}^1 x^2\d{x} \\
=& \frac{x^3}{3} \bigg\rvert^1_{0} \\
=& \frac{1^3}{3} - \frac{0^3}{3}\\
=& \color{limegreen}\boxed{\frac{1}{3}}
\end{align}
$