A basic [[Algorithm]] for finding the [[Equivalent]] [[Reduced Row Echelon Form]] of an [[Augmented Matrix]] using [[Augmented Matrix|Row Operations]].
- Start at the left column
- Move a nonzero term to the top (*if needed*)
- Use the top row to cancel all the terms below in the column
- Lock the top row and current column,
- If the column is all zeroes, skip it
- Start at the rightmost column, if there is no leading term in this column, keep moving left
>[!example]-
>$\augmented{ccccc|c}{
>1&0&2&0& \frac{1}{3} & 0 \\
>0&1&-3&0& \frac{2}{3} & \frac{3}{2} \\
>0 & 0 & 0 & 1 & -\frac{4}{3} & \frac{1}{2} \\
>0 & 0 & 0 & 0 & 0 & 0
>} \huge\sim \cases{
>x + 2z + \frac{1}{3}v = 0 \\
>y - 3z + \frac{2}{3}v = \frac{3}{2} \\
>w - \frac{4}{3}v = \frac{1}{2}
>}
>$
>$\huge\sim\cases{
>x=-2t - \frac{1}{3}s \\
>y = \frac{3}{2}+ 3t - \frac{2}{3}s \\
>w = \frac{1}{2}+ \frac{4}{3}s \\
>z = t \\
>v = s
>}$