Famous constant denoted by $\phi$. $\huge \phi = \frac{1+\sqrt{ 5 }}{2} $ Which is the positive root of $x^2-x-1=0$. Divide a segment into two pieces $a$ and $b$ where $a>b$. The ratio $\frac{a}{b}$ is the golden ratio if $\frac{a}{b}=\frac{a+b}{a}$. >[!tldr] Proof >$ >\begin{align} >\frac{x}{y} &= \frac{{x+y}}{x} \\ > >x^2 &= y(x+y) \\ >x^2 &= xy+y^2 \\ >x^2-xy-y^2 &= 0\\ >x^2 - yx-y^2 &= 0\\ > >x &= \frac{y \pm \sqrt{ y^2 - 4-y^2 }}{2}\\ >&= \frac{y \pm y \sqrt{ 5 }}{2} \\ >x \in \Z^{+} \implies >x &= \frac{y + y \sqrt{ 5 }}{2} \\ >\\ > >\phi &= \frac{x}{y} \\ >&=\frac{1 \pm \sqrt{ 5 }}{2} \\ >\end{align} >$