A [[Group]] [[Homomorphism]] (an instance of [[Homomorphism]] for [[Group|Groups]]) is some [[Function]] $f$ with a [[Domain|domain]] of some group $(G,\circ)$ and [[Codomain|codomain]] of some group $(H, *)$, such that for some two elements $u,v\in G$, the [[Function|function]] $f$ maps $u \circ v$ to $f(u)*f(v)$
$\huge
\begin{align}
f&: G \to H \\
f(u\circ v) &= f(u) * f(v)
\end{align}
$
>[!example]
>The [[Logorithm]] function $\ln$ is a [[Group Homomorphism]] between $(\R,+)$ to $(\R, \cdot)$.
>$\huge \ln(x +y) = \ln(x) \cdot \ln(y) $