A way to more elegantly describe [[Affine Transformations]] as a single [[Matrix|Matrix]]. >[!example] Example simplification with homogeneous coordinates > >$\huge\begin{align*} \let T: \mat{x\\y} &\mapsto \mat{x-3x+3\\2x+y+1} \\ \pa{\mat{x\\y}} &= \mat{1\\2}x + \mat{-3\\1}y + \mat{3\\1} \\ &= \mat{ 1 & -3 & 3 \\ 2 & 1 & 1} \mat{x\\y\\1} >\end{align*}$ We assume for any coordinate in $\Rn n$, you write the coordinate in $\Rn {n+1}$ with a $1$ in the new dimension. ### Notation The notation for a homogeneous coordinate is to put a tilde above the character. $\huge\begin{align*} \text{Point } P &= \pa{P_{x},P_{y}} \\ \tilde P &= \mat{ P_{x}\\ P_{y} \\ 1} \end{align*}$ $\huge\begin{align*} \text{Vector } \vec v &= \mat{v_{x}\\ v_{y}} \\ \tilde v &= \mat{ v_{x}\\ v_{y} \\ 0} \end{align*}$ *Vectors have a 0 in the last column because they are not affected by translations in affine transformations* For any [[Affine Transformations|Affine Transformation]] $\huge T\pa{\vec x} = A\vec x+ \vec b$ In homogeneous form: $\huge \tilde T\pa{\vec x} = \mat{ A & \cdots & \vec b \\ \vdots & \ddots &\vdots \\ 0 & 0 & 1} $ >[!important] Visualization ![](https://upload.wikimedia.org/wikipedia/commons/c/c4/Affine_transformations.gif?20140628205334#invert_B) >[!definition] Simple Translation in homogeneous form > $\huge\begin{align*} \mat{ 1 & 0 & b_{x} \\ 0 & 1 & b_{y}\\ 0 & 0 & 1}\mat{x\\y\\1} &= \mat{x+b_x\\y+b_y\\1} \end{align*}$ ### Line in Homogeneous Formula $\huge \tilde l: \mat{x\\y\\1} = \mat{P_x\\P_y\\1} +t\mat{v_x\\v_y\\0}$ >[!tip] Getting fixed points in Homogeneous Form Note that using homogeneous form will give you a whole *line* of fixed points, to get the proper $\Rn2$ fixed point where $z=1$