An equation relating a [[Linear Combination]] of a [[Ordered Set]] of [[Vector|Vectors]] equal to the [[Zero Vector]].
$\huge \begin{align}
\huge \let \vec{v_{1}},\dots,\vec{v_{m}}& \in \R^{n} \\
\end{align}$
$\huge x_{1}\vec{v_{1}} + \dots +x_{m}\vec {v_{m}}=\vec b
\sim
\augmented{c|c}{
\vec{v_{1} } \cdots \vec{v_{m}} & \vec 0
}$
$\huge\sim A\vec x = \vec 0$
This type of equation is *never* [[Inconsistent]] as there is always a [[Trivial Solution]] where for all $x_{i}=0$, as then the sum will [[Tautology|always]] be $\vec 0$.
The number of solutions will always either be $1$ or [[Infinity|Infinite]].