The [[Identity Element]] of [[Matrix Product|Matrix Multiplication]].
For any [[Matrix]] $A \in M_{m\times n}$, the identity value is a [[Matrix|Matrix]] that when multiplied by $A$ leaves no effect.
$ \huge \begin{align}
\forall A &\in M_{m\times m} \\
A I_{m} &= A
\end{align}
$
There is no identity matrix for any matrix with *non square dimensions*.
For any matrix $A\in \R^n$, the [[Identity Matrix]] is equal to the zero matrix of dimensions $n\times n$ with all it's diagonal filled with $1$.
$\huge \begin{align}
I_{n} &=
\underbrace{ \mat{
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots &\vdots &\ddots &0 \\
0 & 0 & \cdots &1
}}_{n}
\end{align}$
>[!seealso] Transpose Property
$\huge\transpose{I} = I$
>[!example] $\R^3$
>$\huge \begin{align}
>I &\in \R^3 \\
>I &= \mat{1&0&0\\0&1&0\\0&0&1}\\
>\end{align}
>$