An [[Imaginary Number]] is a [[Real Numbers|Real Number]] scaled by $i$ ($\sqrt{ -1 }$).
$ \huge
\C \setminus \R =
\setbuild{ bi }{b\in \R}
$
The notation for referring to the [[Imaginary Number|Imaginary]] part of a [[Complex Numbers|Complex Number]] is:
$ \large
\begin{align}
\mathrm{Im}&: \C \to \C \setminus\R\\
\op{Im}&: a+bi \mapsto bi
\end{align}
$
Note that when using $\mathrm{Im}$ as a function, the convention is to use square brackets instead of parenthesis.
>[!example] Example: $\mathrm{Im}[1+5i]=5i$