The inner product is a generalization of the [[Dot Product]] to any [[Vector Space]]. This operation returns a scalar (an element of the [[Field]] $F$ of the vector space).
$\huge \braket{\cdot, \cdot}: V \times V \to F $
Here are the axioms that an [[Inner Product]] operation must follow:
$\huge \begin{align}
\braket{ f_{1}+ f_{2}, g } &= \braket{f, g} + \braket{f_{2}, g} \\
\braket{kf, g} &= k\braket{f, g} \\
\braket{f, g} &= \braket{g, f} \\
\braket{f, f} &\ge 0 \\
\braket{f,f} = 0 &\iff f = \vec 0\\
\end{align} $
In other words, they must satisfy these Axioms:
- Must be [[Distributive Property|Distributive]]
- Any [[Scalar]] can be pulled out of the product
- Must be [[Commutative Property|Commutative]]
- The [[Operation]] between two of the same object must be greater or equal to 0.
>[!example] Example: Functional [[Vector Space]] Inner Product
>Let $\iota$ be a [[Vector Space]] of real [[Function|functions]] with [[Domain]] of the range $[-\pi,\pi]$ and [[Codomain]] of the [[Real Numbers]].
>
>$\huge \begin{align}
>\iota^{2} \ba{-\pi,\pi} &= \begin{cases}
>f: [-\pi,\pi] \to \R
>\end{cases} \\
>\end{align}$
>
>Because of the defining propery, we can note that $\int_{-\pi}^{\pi} f^{2}(x)\d x$ is [[Finite]].
>
>$\huge \begin{align}
>\braket{f,g} &= \int_{-\pi}^{\pi} f(x)g(x)\d x
>\end{align}$
>
> In this space, we can derive that the $\cos$ and $\sin$ functions are [[Orthogonal]] to one another.
>
>$\huge \begin{align}
> \braket{\cos(x),\sin(x)}&=\int_{-\pi}^{\pi}\sin(x)\cos(x)\d x\\
>&= \int_{-\pi}^{\pi} \frac{\sin(2x)}{2}\d x\\
> &= 0\\
> \therefore \cos &\perp \sin
\end{align}$