For some [[Matrix]] [[Vector Space]] $\mathcal M_{n \times n}(\R)$, its [[Inner Product]] is defined as:
$\huge \braket{A, B} = \mathrm{Tr}(A^{\intercal}B) $
>[!example]
>$\huge \begin{align}
>\let A &= \mat{1&2\\3&4}\\
>\braket{A,A} &= \mathrm{Tr}\pa{
>\mat{1&3\\2&4}
>\mat{1&2\\3&4}
>}\\
>&= \mat{10 & 14 \\ 14 & 20} \\
>&= \boxed{30}
>\end{align}$