>[!warning] trigonometry jumpscare
Trigonometric Substitution is a way to solve an [[Indefinite Integral]] by leveraging [[Trigonometric Identities]] when substituting $x$.
For when $a = \text{const}.$
$\huge\begin{align*}
\int\sqrt{a^{2}-x^{2}\mathrm{d}x}\\
x=a\sin\theta
\end{align*}$
$\huge\begin{align*}
\int\sqrt{a^{2}+x^2}\mathrm{d}x
\\
x=a\tan\theta
\end{align*}$
$\huge\begin{align*}
\int\sqrt{x^2-a^{2}\mathrm{d}x}\\
x =a\sec\theta
\end{align*}$
>[!example]
>$
>\int \frac{\sqrt{4-x^2}}{x^{2}}\mathrm{d}x
>$
>$\begin{align*}
a^{2}&= 4 \\
a &= \sqrt{4}= 2 \\
x &= a\sin\theta = 2\sin\theta\\
\mathrm{d}x &= 2\cos\theta \mathrm{d}\theta \\
\int \frac{\sqrt{4-x^2}}{x^{2}}\mathrm{d}x
&= \int
\frac{
\sqrt{4 - (2\sin\theta)^2}
}{(2\sin\theta)^2}
2\cos(\theta)\mathrm{d}\theta
\\
&= \int
\frac{
\sqrt{4 - 4\sin^2\theta}
}{4\sin^2\theta}
2\cos(\theta)\mathrm{d}\theta \\
&= \int
\frac{
2\sqrt{1 - \sin^2\theta}
}{2\sin^2\theta}
\cos(\theta)\mathrm{d}\theta
\\
&= \int
\frac{
2\cos\theta
}{2\sin^2\theta}
\cos(\theta)\mathrm{d}\theta
\\
&= \int
\frac{
\cos^2\theta
}{\sin^2\theta}
\mathrm{d}\theta
\\
&= \int
\frac{
1-\sin^2\theta
}{\sin^2\theta}
\mathrm{d}\theta
\\
&= \int
\frac{
1-\sin^2\theta
}{\sin^2\theta}
\mathrm{d}\theta
\\
&= \int
\left(
\frac{1}{\sin^2\theta}-
\frac{\sin^2\theta}{\sin^2\theta}
\right)\mathrm{d}\theta \\
&= \int \left(
\csc^{2}\theta - 1
\right) \mathrm{d}\theta
\\
&= -\cot \theta - \theta + C \\
x &= 2\sin\theta \\
\frac{x}{2}&= \sin \theta \\
\tan \theta &= \frac{x}{\sqrt{4-x^2}}\\
\cot\theta &= \frac{\sqrt{4-x^2}}{x} \\
\sin^{-1} \frac{x}{2} &= \theta \\
-\cot \theta - \theta + C &=
-\frac{\sqrt{4-x^{2}}}{x} - \sin^{-1} \frac{x}{2}+C
\\
\end{align*}$
>$
\int \frac{\sqrt{4-x^2}}{x^{2}}\mathrm{d}x
=
-\frac{\sqrt{4-x^{2}}}{x} - \sin^{-1} \frac{x}{2}+C
$